
Hadoop and Cassandra
July 2013

Giannis Neokleous

www.giann.is

@yiannis_n

Cassandra at Knewton

● Student Events (At different processing stages)

● Parameters for models

● Course graphs

● Deployed in many environments ~ 14 clusters

Getting data in and out of
Cassandra in bulk efficiently

Why?

● Lots of data sitting in shiny new clusters

○ Want to run Analytics

● You suddenly realize your schema is not so great

● The data you're storing could be more efficient

● Think you've discovered an awesome new metric

C*

Stuck!

How do you get data out

efficiently and fast?

No slow-downs?

Solutions
● Cassandra comes packaged with sstable2json tool.

● Using the thrift API for bulk mutations, gets.

○ Can distribute reads or writes to multiple machines.

● ColumnFamily[Input|Output]Format - Using Hadoop

○ Needs a live cluster

○ Still uses the thrift API

+

Why is MapReduce a good fit for C*?
● SSTables are sorted

○ MapReduce likes sorted stuff

● SSTables are immutable

○ Easy to identify what has been processed

● Data is essentially key/value pairs

● MapReduce can partition stuff

○ Just like you partition data in your Cassandra cluster

● MapReduce is Cool, so is Cassandra

Does it work?

Yes! But where?

● Been using bulk reading in production for a few months now

- Works great!

● Been using bulk writing into Cassandra for almost two years

- Works great too!

How?!!1

Reading in bulk

A little about SSTables
● Sorted

○ Both row keys and columns

● Key Value pairs

○ Rows:

■ Row value: Key

■ Columns: Value

○ Columns:

■ Column name: Key

■ Column value: Value

● Immutable

● Consist of 4 parts

○ ColumnFamily-hd-3549-Data.db

Column family name Version Table
number

Type (One table consists of 4 or 5 types)
One of: Data, Index, Filter, Statistics, [CompressionInfo]

A little about MapReduce
● InputFormat

○ Figure out where the data is, what to read and how to read them

○ Divides the data to record readers

● RecordReader

○ Instantiated by InputFormats

○ Do the actual reading

● Mapper

○ Key/Value pairs get passed in by the record readers

● Reducer

○ Key/Value pairs get passed in from the mappers

○ All the same keys end up in the same reducer

A little about MapReduce

● OutputFormat

○ Figure out where and how to write the data

○ Divides the data to record writers

○ What to do after the data has been written

● RecordWriter

○ Instantiated by OutputFormats

○ Do the actual writing

SSTableInputFormat
● An input format specifically for SSTables.

○ Extends from FileInputFormat

● Includes a DataPathFilter for filtering through files for *-Data.db

files

● Expands all subdirectories of input - Filters for ColumnFamily

● Configures Comparator, Subcomparator and Partitioner classes used in

ColumnFamily.

● Two types: FileInputFormat

SSTableInputFormat

SSTableColumnInputFormat SSTableRowInputFormat

SSTableRecordReader
● A record reader specifically for SSTables.

● On init:

○ Copies the table locally. (Decompresses it, if using Priam)

○ Opens the table for reading. (Only needs Data, Index and

CompressionInfo tables)

○ Creates a TableScanner from the reader

● Two types:

RecordReader

SSTableRecordReader

SSTableColumnRecordReader SSTableRowRecordReader

Data Flow

C*

SSTable
SSTable

SSTable
SSTable

Hadoop Cluster

SSTable
InputFormatPull

SSTable
RecordReader

SSTable
RecordReader

SSTable
RecordReader

Output

Reduce

Reduce

Reduce

Map

Map

Map

P
u
s
h

OutputFormat

Record
Writer

Record
Writer

Record
Writer

public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();

 Job job = new Job(conf);

 ClassLoader loader = SSTableMRExample.class.getClassLoader();

 conf.addResource(loader.getResource("knewton-site.xml"));

 SSTableInputFormat.setPartitionerClass(RandomPartitioner.class.getName(), job);

 SSTableInputFormat.setComparatorClass(LongType.class.getName(), job);

 SSTableInputFormat.setColumnFamilyName("StudentEvents", job);

 job.setOutputKeyClass(LongWritable.class);

 job.setOutputValueClass(StudentEventWritable.class);

 job.setMapperClass(StudentEventMapper.class);

 job.setReducerClass(StudentEventReducer.class);

 job.setInputFormatClass(SSTableColumnInputFormat.class);

 job.setOutputFormatClass(TextOutputFormat.class);

 SSTableInputFormat.addInputPaths(job, args[0]);

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);

}

public class StudentEventMapper extends SSTableColumnMapper<Long, StudentEvent, LongWritable, StudentEventWritable> {

 @Override

 public void performMapTask(Long key, StudentEvent value, Context context) {

//do stuff here

 }

 // Some other omitted trivial methods

}

Load additional properties from a conf
file

Define mappers/reducers. The only thing
you have to write.

Read each column as a separate record.

Sees row key/column pairs.
Remember to skip deleted columns
(tombstones)

Replication factor

● Data replication is a thing

● Have to deal with it:

○ In the reducer

○ Only read (num tokens) / (replication factor) - if you're feeling

brave

Priam

● Incremental backups

○ No need to read everything all the time

● Priam usually snappy compresses tables

● Works good if you want to use EMR

○ Backups already on S3

Writing in bulk

Writing in bulk

● Define custom output format

● Define custom record writer

○ Uses the SSTableSimpleWriter

■ Expects keys in sorted order (Tricky with MapReduce - More

about this later)

● Nothing special on the Mapper or Reducer part

What happens in the OutputFormat?

● Not much...

○ Instantiates and does basic configuration for RecordWriter

 public abstract RecordWriter<K, V> getRecordWriter(TaskAttemptContext context)

 throws IOException, InterruptedException;

What happens in the RecordWriter?

● Writes Columns, ExpiringColumns (ttl), CounterColumns,

SuperColumns

○ With the right abstractions you can reuse almost all of the code in

multiple Jobs

● On close SSTables written by the record writer get sent** to Cassandra

public class RecordWriter<K, V> {

 public abstract void write(K key, V value)

throws IOException, InterruptedException;

 public abstract void close(TaskAttemptContext context)

throws IOException, InterruptedException;

}

public SSTableSimpleWriter(File directory,

CFMetaData metadata, IPartitioner partitioner)

protected void writeRow(DecoratedKey key,

ColumnFamily columnFamily)

private void addColumn(Column column)

How exactly do you send the
SSTables to Cassandra?

How do SSTables get sent? - Part I

● sstableloader introduced in 0.8 using the BulkLoader class

○ Starts a gossiper occupies ports

○ Needs coordination - Locking

● Not convenient to incorporate the BulkLoader class in the code

● Gossiper connects the sender to the cluster

○ Not part of the ring

○ Bug in 0.8 persisted the node in the cluster

How do SSTables get sent? - Part II

● Smart partitioning in Hadoop, then scp

○ No Gossiper

○ No coordination

○ Each reducer is responsible for handling keys specific to 1 node in

the ring.

● Needs ring information beforehand

○ Can be configured

■ Offline in conf

■ Right before the job starts

Decorated Keys

● Keys are decorated before they're stored.

○ Faster to work with - Compares, sorts etc.

○ RandomPartitioner uses MD5 hash.

● Depends on your partitioner.

○ Random Partitioner

○ OrderPreservingPartitioner

○ etc? custom?

● When reading the SSTableScanner de-decorates keys.

● Tricky part is when writing tables.

Decorated Keys

● Columns and keys are sorted - After they're decorated.

● Don't partition your keys in MapReduce before you decorate them.

○ Unless you're using the unsorted table writer.

R1 R2 R3

W1 W2 W3

c
b
a

f
e
d

i
h
g

0cc175b9c0f1b6a831c399e26977266
1

92eb5ffee6ae2fec3ad71c777531578f
4a8a08f09d37b73795649038408b5f3
3

...

...

...

...

...

...

KassandraMRHelper
● Open sourcing today!

○ github.com/knewton/KassandraMRHelper

● Has all you need to get started on bulk reading SSTables with Hadoop.

● Includes an example job that reads "student events"

● Handles compressed tables

● Use Priam? Even better can snappy decompress priam backups.

● Don't have a cluster up or a table handy?

○ Use com.knewton.mapreduce.cassandra.WriteSampleSSTable in the

test source directory to generate one.

usage: WriteSampleSSTable [OPTIONS] <output_dir>

 -e,--studentEvents <arg> The number of student events per student to be

 generated. Default value is 10

 -h,--help Prints this help message.

 -s,--students <arg> The number of students (rows) to be generated.

 Default value is 100.

Thank you

Questions?
Giannis Neokleous

www.giann.is

@yiannis_n

